

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 652-665

Combinatorial synthesis of isoxazole library and their liquid crystalline properties

Masahiro Tanaka,^a Takeharu Haino,^{a,*} Keiko Ideta,^b Kanji Kubo,^b Akira Mori^b and Yoshimasa Fukazawa^{a,*}

^aDepartment of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

^bInstitute for Materials Chemistry and Engineering, Kyushu University Kasuga, Fukuoka 816-8580, Japan

Received 21 April 2006; revised 31 October 2006; accepted 2 November 2006 Available online 17 November 2006

Abstract—Six types of isoxazoles including 60 molecules were synthesized using combinatorial synthesis on solid support in a parallel fashion. Highly regioselective 1,3-dipolar cycloaddition of the nitrile oxides to the triple bond of the solid-attached ethynylbenzamides gave isoxazoles on solid support in good yield. Thirty molecules of them exhibited mesomorphic properties. The combination of molecular mechanics calculations and X-ray diffraction experiments of 2g and 3g revealed that the smectic phase of 2g had a bilayer structure, whereas 3g showed a monolayer liquid crystalline phase. These are supported in comparison with the single crystal structures of 2g and 3g. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Liquid crystals are partially ordered, anisotropic fluids, thermodynamically located between the solid state and the isotropic liquid. Liquid crystalline phases represent intriguing states of soft matter, combining order and mobility on a molecular level.¹ These unique phases create fascinating systems, which respond to external (magnetic, electronic, chemical, or mechanical) stimuli by finding a new configuration.² Thus, liquid crystalline materials have had great impact on recent development of mobile information technologies with numerous applications in optoelectric devices.

Classical rod-like liquid crystalline molecules are composed of anisometric units and flexible alkyl chains. Phenyl, biphenyl, terphenyl, cyclohexyl, etc., are often incorporated as an anisometric core. In recent years, many unique mesogens have been reported. Troponoid, expanded poly aromatic, metal-containing aromatic, fullerene-containing, selfassembling, and hydrogen-bonded mesogens³ have been developed with their unique functions. Among them, bent-shaped (banana-shaped) liquid crystalline molecules show unique chiral mesogenic phases.⁴ 3,5-Disubstituted isoxazole derivatives⁵ formally belong to the class of the bent-shaped molecules; however, they exhibit classical nematic and smectic mesophases. Structure-property relationships in isoxazole liquid crystals still remain fairly uncharted. In particular, unsymmetrical diphenyl isoxazoles bearing an alkoxy chain at one end of the molecules and a polar group at the other end were limited.⁶

Combinatorial chemistry is one of the most promising tools for searching the desired functional compounds. Recently, liquid crystalline libraries of troponoid⁷ and benzenoid amides⁸ were prepared on solid support. In our previous report, we have systematically investigated the substitution effect on mesomorphic behaviors of anisometric 3,5-diphenyl isoxazole-based compounds having a cyano group using combinatorial chemistry.⁹ In this paper, we report the extensive investigation of liquid crystalline properties for combinatorial library of 3,5-disubstituted isoxazoles.

1,3-Dipolar cycloaddition of nitrile oxide to triple bond is one of the most potential synthetic ways for the construction of an isoxazole core. In recent years, a number of solid-phase synthesis of isoxazoles via 1,3-dipolar cycloaddition have been reported.¹⁰ We applied this method to the combinatorial synthesis of the isoxazole library using polymer supported phenylacetylene. Our strategy for the synthesis of the isoxazole liquid crystals on the solid support is outlined in Figure 1.

Phenylacetylene unit is immobilized on a polymer support by the amide linkage, which can be easily cleaved by acid catalysis and simultaneously converted to cyano group. The cycloaddition of nitrile oxides on solid support having a variety of alkoxy substituents provides isoxazoles 1 and 2 after removal from the solid support. Isoxazoles 3–6 are prepared by benzoylation of the resin-bound isoxazoles having a hydroxyl group, followed by cleavage from solid

^{*} Corresponding authors. Tel.: +81 824 24 7403; fax: +81 824 24 0724; e-mail addresses: haino@sci.hiroshima-u.ac.jp; fukazawa@sci.hiroshima-u. ac.jp

^{0040–4020/\$ -} see front matter 0 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.11.005

6: R₂= R₃= R₄= O-*n*-C_nH_{2n+1}

Figure 1. Synthetic strategy of isoxazole liquid crystal on solid support.

support. Isoxazole libraries 1-6 can allow us to carry out the systematic evaluation of the substitution effect on mesomorphism.

2. Results and discussion

2.1. Library synthesis

Parallel synthesis of the isoxazole library on solid support was carried out using parallel synthesizer MiniBlock. Rink resin 7 was selected as a solid support. After the removal of the Fmoc group by treatment with piperidine in DMF, the condensation reaction of ethynylbenzoic acid **8** or **9** with *N*,*N*'-diisopropylcarbodiimide (DIC) and 1-hydroxybenzotriazole (HOBt) gave the corresponding products **10** and **11**. Resins **10** and **11** smoothly reacted with the nitrile oxides, generated in situ upon treatment of hydroximinoyl chlorides **12a**–**j**¹¹ and **13** with triethylamine, to provide the resin-bound diphenyl isoxazole **14a**–**j**, **15a**–**j**, and **16** (Scheme 1). Completion of the cycloaddition reactions was monitored by the disappearance of acetylene C–H band that appeared around 3286 cm⁻¹ using FTIR spectroscopy. Trifluoromethanesulfonic anhydride worked nicely

to cleave the linkage to liberate the desired isoxazoles **1a–j** or **2a–j** into the solution (Scheme 2). After quick purification of the crude products by column chromatography, the isoxazoles were furnished in good yield (Table 1).

Scheme 2.

The *tert*-butyldimethylsilyl (TBS) group of **16** was removed upon treatment with tetrabutylammonium fluoride. The condensation reaction of benzoic acid derivatives **17a–j**, **18a–j**, **19a–j**, and **20a–j** with *N,N'*-diisopropylcarbodiimide in the presence of *N,N*-dimethylaminopyridine gave supportbound isoxazoles **21a–j**, **22a–j**, **23a–j**, and **24a–j**. Liberation of isoxazoles from the solid support upon treatment with trifluoromethanesulfonic anhydride gave the desired isoxazoles **3a–j**, **4a–j**, **5 a–j**, and **6a–j** (Scheme 3). All library

Table 1. Isolated yields and transition temperatures of isoxazoles 1 and 2^{a}

members **1a–6j** were characterized by ¹H and ¹³C NMR spectroscopies, high-resolution mass spectrometry, and elemental analysis.

2.2. Mesomorphic behavior

The phase transition temperatures and the thermal behavior of compounds **1a-6** were investigated by polarized optical microscopy and differential scanning calorimetric (DSC) measurements. The results are summarized in Tables 1 and 2. Mesomorphic behaviors were found in compounds 2, whereas compounds 1 were not mesomorphic. This should be due to the larger molecular dipole of compounds 2 produced by the presence of the cyano group at *para*-position. The CN group of compounds 1 made molecular breadth wider to decrease the thermal stability of mesomorphic phases. Compounds 2 showed nematic (N) and smectic A (SmA) phases; the N phase was characterized by the observation of schlieren textures, and the SmA phase was assigned by the observation of fan textures. Shorter chained compounds 2a-f displayed an N phase, whereas a SmA phase was observed in longer chained compounds 2i and

	R ₁	Yield (%)	Transition temp (°C)		R ₁	Yield (%)	Transition temp (°C)
1a	OCH ₃	72	Cr 159 Iso	2a	OCH ₃	90	Cr 164 (12.1) N 223 (0.3) Iso
1b	OC_2H_5	85	Cr 157 Iso	2b	OC_2H_5	83	Cr 128 (26.8) N 199 (0.3) Iso
1c	OC_3H_7	49	Cr 138 Iso	2c	OC_3H_7	82	Cr 134 (26.4) [SmA 120 ^b] N 178 (0.2) Iso
1d	OC_4H_9	64	Cr 131 Iso	2d	OC_4H_9	66	Cr 126 (27.8) N 185 (0.4) Iso
1e	OC_5H_{11}	77	Cr 116 Iso	2e	OC_5H_{11}	83	Cr 116 (29.2) N 180 ^b Iso
1f	OC_6H_{13}	61	Cr 112 Iso	2f	OC_6H_{13}	69	Cr 112 (38.6) N 178 (0.6) Iso
1g	OC_7H_{15}	88	Cr 109 Iso	2g	OC_7H_{15}	67	Cr 113 (35.0) SmA 159 (0.1) N 178 (0.4) Iso
1ĥ	OC_8H_{17}	62	Cr 110 Iso	2h	OC_8H_{17}	58	Cr 112 (31.4) SmA 168 (0.1) N 177 (0.1) Iso
1i	OC_9H_{19}	71	Cr 114 Iso	2i	OC_9H_{19}	74	Cr 92 (42.5) SmA 176 (2.5) Iso
1j	$OC_{10}H_{21}$	65	Cr 112 Iso	2j ^c	$OC_{10}H_{21}$	68	Cr 93 (29.5) SmA 173 (3.4) Iso

^a Cr, crystals; N, a nematic phase; SmA, a smectic A phase; Iso, isotropic liquid. The transition temperatures and enthalpy changes (kJ/mol) shown in parentheses were obtained during the first heating process. [] means monotropic transition temperatures, which were obtained by cooling.

^b Data could not be determined from DSC.

^c A mixture of compound **2j** and its regioisomer was reported.⁶

Table 2. Isolated yields and transition temperatures of isoxazoles $3-6^{a}$

	R ₂	R ₃	R ₄	Yield (%)	Transition temp (°C)
3a	Н	OCH ₃	Н	99	Cr 213 (36.3) N 352 Dec
3b	Н	OC ₂ H ₅	Н	99	Cr 187 (42.9) N 366 Dec
3c	Н	OC_3H_7	Н	99	Cr 154 (28.1) SmA 221 ^b N 355 Dec
3d	Н	OC_4H_9	Н	99	Cr 159 (33.0) SmA 262 ^b N 356 Dec
3e	Н	OC_5H_{11}	Н	99	Cr 138 (25.8) SmA 278 ^b N 340 Dec
3f	Н	OC_6H_{13}	Н	86	Cr 130 (57.2) SmA 300 ^b N 328 Dec
3g	Н	OC_7H_{15}	Н	99	Cr 121 (27.4) SmA 291 ^b N 304 Dec
3h	Н	OC_8H_{17}	Н	84	Cr 116 (27.7) SmA 310 ^b N 313 Dec
3i	Н	OC_9H_{19}	Н	99	Cr 121 (49.2) SmA 318 Dec
3j	Н	$OC_{10}H_{21}$	Н	44	Cr 118 (41.5) SmA 300 Dec
4a	OCH ₃	OCH ₃	Н	68	Cr 225 (45.6) N 284 (0.2) Iso
4b	OC_2H_5	OC_2H_5	Н	92	Cr 189 (43.5) SmA 193 ^b N 250 (0.6) Iso
4c	OC_3H_7	OC_3H_7	Н	99	Cr 182 (35.6) SmA 222 (1.2) N 228 (0.4) Iso
4d	OC_4H_9	OC_4H_9	Н	80	Cr 172 (34.9) SmA 220 (4.0) Iso
4e	OC_5H_{11}	OC_5H_{11}	Н	48	Cr 159 (35.2) SmA 215 (4.9) Iso
4f	OC_6H_{13}	OC_6H_{13}	Н	66	Cr 156 (33.9) SmA 205 (2.2) Iso
4g	OC ₇ H ₁₅	OC_7H_{15}	Н	82	Cr 152 (32.9) SmA 206 (2.3) Iso
4h	OC_8H_{17}	OC_8H_{17}	Н	82	Cr 151 (39.0) SmC 157 ^b SmA 203 (4.0) Iso
4i	OC_9H_{19}	OC_9H_{19}	Н	71	Cr 147 (39.7) SmC 153 ^b SmA 192 (3.6) Iso
4j	$OC_{10}H_{21}$	$OC_{10}H_{21}$	Н	99	Cr 145 (41.0) SmC 159 ^b SmA 188 (3.7) Iso
5a	OCH ₃	Н	OCH ₃	99	Cr 223 Iso
5b	OC_2H_5	Н	OC_2H_5	99	Cr 194 Iso
5c	OC_3H_7	Н	OC_3H_7	31	Cr 175 Iso
5d	OC_4H_9	Н	OC_4H_9	56	Cr 152 Iso
5e	OC_5H_{11}	Н	OC_5H_{11}	99	Cr 144 Iso
5f	OC_6H_{13}	Н	OC_6H_{13}	52	Cr 137 Iso
5g	OC_7H_{15}	Н	OC_7H_{15}	34	Cr 135 Iso
5h	OC_8H_{17}	Н	OC_8H_{17}	36	Cr 141 Iso
5i	OC_9H_{19}	Н	OC_9H_{19}	71	Cr 128 Iso
5j	$OC_{10}H_{21}$	Н	$OC_{10}H_{21}$	97	Cr 133 Iso
6a	OCH ₃	OCH_3	OCH ₃	84	Cr 214 Iso
6b	OC_2H_5	OC_2H_5	OC_2H_5	99	Cr 192 Iso
6c	OC_3H_7	OC_3H_7	OC_3H_7	89	Cr 188 Iso
6d	OC_4H_9	OC_4H_9	OC_4H_9	39	Cr 139 Iso
6e	OC_5H_{11}	OC_5H_{11}	OC_5H_{11}	79	Cr 117 Iso
6f	OC_6H_{13}	OC_6H_{13}	OC_6H_{13}	62	Cr 102 Iso
6g	OC ₇ H ₁₅	OC ₇ H ₁₅	OC ₇ H ₁₅	55	Cr 102 Iso
6h	OC_8H_{17}	OC_8H_{17}	OC_8H_{17}	46	Cr 109 Iso
6i	OC_9H_{19}	OC_9H_{19}	OC_9H_{19}	84	Cr 112 Iso
6j	$OC_{10}H_{21}$	$OC_{10}H_{21}$	$OC_{10}H_{21}$	89	Cr 107 Iso

^a The transition temperatures and enthalpy changes (kJ/mol) shown in parentheses were obtained during the first heating process. The transition temperatures of **5** and **6** were determined by the microscopic observation SmC, a smectic C phase; Dec, decomposition.

^b Data could not be determined from DSC.

2j. Extension of the alkyl chain of **2** produced a SmA phase in which the molecules are more ordered than in an N phase. These trends suggest that the extension of the flexible alkyl chains creates well ordered mesomorphic phases.

Compounds 3 and 4 exhibit smectic and nematic phases. The additional benzene rings connected to the ester linkage increased the thermal stability of the liquid crystalline phases (2 vs 3), indicating that the segregation between the aromatic units and the flexible chains is well established in the liquid crystalline phases of 3. The mesophases of 4 are thermally less stable than those of **3**. The presence of the more alkyl chains at *meta*-positions on the benzene ring increases the volumes of the flexible chains due to their dynamic movement; this should disrupt the order of the anisometric layers to make it less stable. Smectic C (SmC) phases were observed only in compounds 4h-j, determined from the observation of broken-fan and schlieren textures. These compounds have the two long alkyl chains at meta- and para-position, bringing the slightly tilted arrays of the liquid crystalline phases. Compounds 5 and 6 are not mesomorphic; their bulky chains should interrupt the segregation of their anisometric units.

2.3. X-ray diffraction study

In order to obtain the structural information of molecular array in the liquid crystalline phases, the X-ray diffraction measurements (XRD) of **2g**, **3d**, **3g**, **4g**, and **4i** were carried out in the smectic phases. The smectic phase of **2g** showed the layer spacing d value (30.8 Å) larger than the calculated molecular length of **2g** (20 Å), indicating that the molecules should interdigitate and form a bilayer structure in the smectic phases for **3d**–**4i** are consistent with the calculated molecular lengths (Table 3). This suggested that these molecules create simple monolayer structures in the smectic phases.

2.4. Crystal structures

Crystal structures of $2g^9$ and $3g^{13}$ gave an insight into the structures of the molecular arrays in the liquid crystalline phases. In the X-ray crystallography of 2g, the rigid diphenyl isoxazole cores nicely stack in the antiparallel orientation due to the strong dipole–dipole interaction between the cyano groups (Fig. 2). This antiparallel orientation

Table 3. Layer spacing d values and calculated molecular lengths of 2, 3, and 4

Compd	R ₁	<i>d</i> (Å)	Temp (°C) ^b	Molecular lengths (Å) ^c
2g 3d 3g 4g 4i	$\begin{array}{c} OC_{7}H_{15} \\ OC_{4}H_{9} \\ OC_{7}H_{15} \\ OC_{7}H_{15} \\ OC_{9}H_{19} \end{array}$	30.8 (SmA) ^a 23.1 (SmA) ^a 28.1 (SmA) ^a 30.9 (SmA) ^a 31.0 (SmC) ^a 32.1 (SmA) ^a	140 240 280 200 152 180	23.1 25.4 28.5 28.4 30.9

^a The mesogenic phases are indicated.

^b The XRD were measured at the temperatures.

^c The molecular lengths were calculated by MacroModel V. 6.5 using amber* force field.¹²

Figure 2. Packing of molecules (a) 2g and (b) 3g.

rationalizes that the bilayer structure of **2g** forms in the SmA phase.

In contrast, the crystal structure of 3g disclosed that the cyano groups stay away from each other in the antiparallel orientation; the dipole–dipole interaction of the cyano groups is too weak to provide the bilayer structure. As a result, the mesogens having 4-alkoxybenzene carbonyloxy groups form the monolayer structures in their smectic phases.

3. Conclusion

We constructed 60 members of the isoxazole library using combinatorial synthesis on solid support. The isoxazoles 2 and 3 with alkyl chains showed SmA and N phases while the isoxazoles 4 with two alkyl chains presented SmC phases in addition to SmA and N phases. Combinatorial synthesis of liquid crystalline compounds has been shown to be potential for the systematic investigation for their functions, resulting from characteristics of their structures.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were measured with a Varian Mercury 300 or JEOL-Lambda 500 spectrometer using a residual solvent signal as internal standard. All NMR spectra were recorded in CDCl₃ unless otherwise indicated. Mass spectra were recorded with a JEOL JMX-SX 102 mass spectrometer. IR spectra were measured on a JASCO FT/IR-420S spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400CHN elemental analyzer. The mesomorphic phase and the transition temperatures were observed by a polarizing microscope Olympus (BHSP BH-2) equipped with a hot stage (Linkam TH-600RMS). The enthalpy changes were measured on a Shimadzu DSC-50 differential scanning calorimeter. The X-ray diffraction measurements were carried out with a Rigaku Rint 2100 system using Ni-filtered Cu Ka radiation at various temperatures. The measuring temperatures were controlled with a Linkam HFS-91 hot stage. The X-ray diffraction analysis was performed with Mac Science DIP2030 or Bruker SMART-APEX at ambient temperature.

All reactions were carried out under an argon atmosphere unless otherwise noted. THF was freshly distilled from Na–benzophenone. Dichloromethane (DCM) and dimethylformamide (DMF) were freshly distilled from CaH₂. Column chromatography was performed using Merck silica gel (70–230 mesh).

4.2. Preparations of benzohydroximoyl chloride 12a-j

4.2.1. 4-Methoxybenzohydroximoyl chloride 12a. See Ref. 14.

4.2.2. 4-Ethoxybenzohydroximoyl chloride 12b. See Ref. 15.

4.2.3. 4-Propoxybenzohydroximoyl chloride 12c. To a solution of 4-propyloxybenzaldoxime¹⁶ (400 mg, 2.2 mmol) in DMF (2 ml) at 0 °C was added *N*-chlorosuccinimide (300 mg, 2.25 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (430 mg, 91%). The product prepared in this manner did not require further purification for conversion to the isoxazoles. ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, 2H, *J*=9.0 Hz), 6.90 (d, 2H, *J*=9.0 Hz), 3.95 (t, 2H, *J*=6.6 Hz), 1.77–1.88 (m, 2H), 1.04 (t, 3H, *J*=7.5 Hz).

4.2.4. 4-Butoxybenzohydroximoyl chloride 12d. See Ref. 17.

4.2.5. 4-Pentyloxybenzohydroximoyl chloride 12e. To a solution of 4-pentyloxybenzaldoxime¹⁶ (200 mg, 0.96 mmol) in DMF (2 ml) at 0 °C was added *N*-chlorosuccinimide (133 mg, 1.0 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (209 mg, 96%). ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, 2H, *J*=9.0 Hz), 6.90 (d, 2H, *J*=9.0 Hz), 3.99 (t, 2H, *J*=6.6 Hz), 1.75–1.85 (m, 2H), 1.35–1.49 (m, 4H), 0.93 (t, 3H, *J*=7.2 Hz).

4.2.6. 4-Hexyloxybenzohydroximoyl chloride 12f. To a solution of 4-hexyloxybenzaldoxime¹⁶ (400 mg, 1.8 mmol) in DMF (2 ml) at 0 °C was added *N*-chlorosuccinimide (240 mg, 1.8 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (439 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, 2H, *J*=8.7 Hz), 6.90 (d, 2H, *J*=8.7 Hz), 3.99 (t, 2H, *J*=6.6 Hz), 1.74–1.84 (m, 2H), 1.33–1.48 (m, 6H), 0.91 (t, 3H, *J*=6.9 Hz).

4.2.7. 4-Heptyloxybenzohydroximoyl chloride 12g. To a solution of 4-heptyloxybenzaldoxime¹⁶ (1 g, 5.17 mmol) in DMF (5 ml) at 0 °C was added *N*-chlorosuccinimide (725 mg, 5.43 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (1.28 g, 92%). ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, 2H, *J*=9.0 Hz), 6.90 (d, 2H, *J*=9.0 Hz), 3.99 (t, 2H, *J*=6.6 Hz), 1.75–1.84 (m, 2H), 1.31–1.45 (m, 8H), 0.89 (t, 3H, *J*=6.9 Hz).

4.2.8. 4-Octyloxybenzohydroximoyl chloride 12h. To a solution of 4-octyloxybenzaldoxime¹⁶ (450 mg, 1.8 mmol) in DMF (2 ml) at 0 °C was added *N*-chlorosuccinimide (240 mg, 1.8 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (450 mg, 88%). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, 2H, *J*=8.7 Hz), 6.90 (d, 2H, *J*=8.7 Hz), 3.98 (t, 2H, *J*=6.6 Hz), 1.74–1.84 (m, 2H), 1.29–1.47 (m, 10H), 0.88 (t, 3H, *J*=6.6 Hz).

4.2.9. 4-Nonyloxybenzohydroximoyl chloride 12i. To a solution of 4-pentyloxybenzaldoxime¹⁶ (200 mg, 0.76 mmol) in DMF (2 ml) at 0 °C was added *N*-chlorosuccinimide (152 mg, 1.1 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (225 mg, 99%). ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, 2H, *J*=8.7 Hz), 6.90 (d, 2H, *J*=8.7 Hz), 3.98 (t, 2H, *J*=6.6 Hz), 1.77–1.81 (m, 2H), 1.28–1.46 (m, 12H), 0.88 (t, 3H, *J*=6.9 Hz).

4.2.10. 4-Decyloxybenzohydroximoyl chloride 12j. To a solution of 4-decyloxybenzaldoxime¹⁶ (550 mg, 2 mmol) in DMF (2 ml) at 0 °C was added *N*-chlorosuccinimide (280 mg, 1.0 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (465 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, 2H, *J*=9.0 Hz), 6.90 (d, 2H, *J*=9.0 Hz), 3.98 (t, 2H, *J*=6.6 Hz), 1.74–1.84 (m, 2H), 1.27–1.51 (m, 14H), 0.88 (t, 3H, *J*=6.6 Hz).

4.2.11. 4-[(*tert***-Butyldimethylsilyl)oxy]benzohydroximoyl chloride 13.** To a solution of 4-[(*tert*-butyldimethylsilyl)oxy]benzaldoxime¹⁸ (800 mg, 3.2 mmol) in DMF (4 ml) at 0 °C was added *N*-chlorosuccinimide (446 mg, 3.3 mmol). After stirred at room temperature for 1 h, the reaction mixture was poured into four volumes of water and extracted with ether. The organic layer was washed three times with water, dried over Na₂SO₄, and concentrated under vacuum to give the product (922 mg, 95%). ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, 2H, *J*=9.0 Hz), 6.85 (d, 2H, *J*=9.0 Hz), 0.98 (s, 9H), 0.22 (s, 6H).

4.3. Preparation of solid-attached phenylacetylene 10

Fmoc-NH-SAL resin (1 g, loading 0.61 mmol/g) was shaken with 20% piperidine in DMF (10 ml) for 1 h. The resin was washed with DMF, MeOH, and DCM (10 ml each). Bromophenol blue test indicated the successful Fmoc-deprotection. After drying in vacuo, the resin was divided into two equal portions. Each resin portion was swollen in DMF (10 ml, 10 min), and after draining the solvent, *m*-ethynylbenzoic acid (145 mg, 0.9 mmol), 1-hydroxybenzotriazole (140 mg, 0.9 mmol), *N*,*N*-diisopropylcarbodiimide (0.2 ml, 1.2 mmol) and DMF (15 ml) were added. After shaking for 24 h, the resins were washed with DMF, MeOH, and DCM (5×10 ml each).

4.4. Preparation of solid-attached phenylacetylene 11

Fmoc-NH-SAL resin (1 g, loading 0.61 mmol/g) was shaken with 20% piperidine in DMF (10 ml) for 1 h. The resin was washed with DMF, MeOH, and DCM (10 ml each). Bromophenol blue test indicated the successful Fmoc-deprotection. After drying in vacuo, the resin was divided into two equal portions. Each resin portion was swollen in DMF (10 ml, 10 min), and after draining the solvent, *p*-ethynylbenzoic acid (145 mg, 0.9 mmol), 1-hydroxybenzotriazole (140 mg, 0.9 mmol), N,N'-diisopropylcarbodiimide (0.2 ml, 1.2 mmol), and DMF (15 ml) were added. After shaking for 24 h, the resins were washed with DMF, MeOH, and DCM (5×10 ml each).

4.5. General procedure for the preparation of 3,5-diphenyl isoxazoles 1a–j and 2a–j

Twenty portions of the solid-attached phenylacetylenes **10** and **11** (50 mg, 0.03 mmol) were shaken with triethylamine (0.04 ml) in DCM (1 ml) for 5 min. Solutions of benzo-hydroximoyl chlorides **12a–j** (0.24 mmol each) in DCM (1 ml each) were added to the resin portions and the mixtures were shaken for 24 h at room temperature. The resins were washed with DMF, MeOH, and DCM (5×10 ml each). The solid-attached isoxazoles with pyridine (14 ml, 0.18 mmol) and trifluoromethanesulfonic anhydride (10 ml, 0.06 mmol) in DCM (1.5 ml) were shaken for 3 h. After filtering off the resins, the filtrates were concentrated, and purified by column chromatography on SiO₂ (100% DCM) to give the isoxazoles **1a–j** and **2a–j** as white solid.

4.5.1. 3-(4-Methoxyphenyl)-5-(3-cyanophenyl)-isoxazole 1a. ¹H NMR (300 MHz, CDCl₃) δ 8.11 (s, 1H), 8.07 (d, 1H, *J*=7.8 Hz), 7.81 (d, 2H, *J*=9.0 Hz), 7.73 (d, 1H, *J*= 7.8 Hz), 7.63 (t, 1H, *J*=7.8 Hz), 7.02 (d, 2H, *J*=9.0 Hz), 6.88 (s, 1H), 3.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 162.8, 161.3, 133.2, 130.0, 129.7, 129.2, 128.7, 128.2, 121.0, 118.0, 114.4, 113.5, 98.7, 55.4; IR (KBr) 3121, 2925, 2852, 2229, 1609, 1528, 1433, 1387, 1293, 1255, 1177 cm $^{-1}$; HRMS (EI⁺) calcd for $C_{17}H_{12}N_2O_2$: 276.0899, found: 276.0895. Anal. Calcd for $C_{17}H_{12}N_2O_2$: C, 73.90; H, 4.38; N, 10.14. Found: C, 73.85; H, 4.70; N, 9.83.

4.5.2. 3-(**4**-Ethoxyphenyl)-**5**-(**3**-cyanophenyl)-isoxazole **1b.** ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 8.06 (d, 1H, *J*=7.8 Hz), 7.78 (d, 2H, *J*=9.0 Hz), 7.73 (d, 1H, *J*= 7.8 Hz), 7.61 (t, 1H, *J*=7.8 Hz), 6.99 (d, 2H, *J*=9.0 Hz), 6.87 (s, 1H), 4.01 (q, 2H, *J*=6.9 Hz), 1.45 (t, 3H, *J*= 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.7, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.8, 118.0, 114.9, 113.5, 98.7, 63.6, 14.8; IR (KBr) 3123, 2981, 2925, 2226, 1613, 1529, 1440, 1387, 1293, 1252, 1177 cm⁻¹; HRMS (EI⁺) calcd for C₁₈H₁₄N₂O₂: 290.1055, found: 290.1057. Anal. Calcd for C₁₈H₁₄N₂O₂·0.1hexane: C, 74.68; H, 5.15; N, 9.42. Found: C, 74.40; H, 4.95; N, 9.03.

4.5.3. 3-(**4**-**Propoxyphenyl**)-**5**-(**3**-**cyanophenyl**)-**isoxazole 1c.** ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 8.07 (d, 1H, *J*=7.8 Hz), 7.79 (d, 2H, *J*=9.0 Hz), 7.73 (d, 1H, *J*= 7.8 Hz), 7.63 (t, 1H, *J*=7.8 Hz), 7.00 (d, 2H, *J*=9.0 Hz), 6.87 (s, 1H), 3.99 (t, 2H, *J*=6.6 Hz), 1.79–1.91 (m, 2H), 1.06 (t, 3H, *J*=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.8, 118.0, 115.0, 113.6, 98.7, 69.7, 22.5, 10.5; IR (KBr) 3101, 2964, 2876, 2233, 1612, 1529, 1439, 1387, 1293, 1252, 1180 cm⁻¹; HRMS (EI⁺) calcd for C₁₉H₁₆N₂O₂: 0.4toluene·0.2H₂O: C, 75.94; H, 5.73; N, 8.12. Found: C, 75.58; H, 5.55; N, 8.04.

4.5.4. 3-(4-Butoxyphenyl)-5-(3-cyanophenyl)-isoxazole 1d. ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 8.07 (d, 1H, *J*=7.8 Hz), 7.79 (d, 2H, *J*=9.0 Hz), 7.73 (d, 1H, *J*= 7.8 Hz), 7.63 (t, 1H, *J*=7.8 Hz), 7.00 (d, 2H, *J*=9.0 Hz), 6.87 (s, 1H), 4.02 (t, 2H, *J*=6.6 Hz), 1.76–1.83 (m, 2H), 1.48–1.58 (m, 2H), 1.06 (t, 3H, *J*=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 114.9, 113.5, 98.7, 67.8, 31.2, 19.2, 13.8; IR (KBr) 3116, 2963, 2941, 2876, 2232, 1610, 1527, 1433, 1390, 1295, 1255, 1178 cm⁻¹; HRMS (EI⁺) calcd for C₂₀H₁₈N₂O₂· 0.05CH₂Cl₂: C, 74.64; H, 5.65; N, 8.68. Found: C, 74.47; H, 5.31; N, 8.46.

4.5.5. 3-(**4**-Pentyloxyphenyl)-**5**-(**3**-cyanophenyl)-isoxazole 1e. ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 8.06 (d, 1H, *J*=7.8 Hz), 7.78 (d, 2H, *J*=8.4 Hz), 7.73 (d, 1H, *J*=7.8 Hz), 7.62 (t, 1H, *J*=7.8 Hz), 7.00 (d, 2H, *J*=8.4 Hz), 6.87 (s, 1H), 4.02 (t, 2H, *J*=6.6 Hz), 1.77–1.87 (m, 2H), 1.37–1.49 (m, 4H), 0.94 (t, 3H, *J*=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 114.9, 113.5, 98.7, 68.2, 28.9, 28.2, 22.4, 14.0; IR (KBr) 3103, 2972, 2936, 2869, 2232, 1609, 1530, 1431, 1390, 1296, 1261, 1178 cm⁻¹; HRMS (EI⁺) calcd for C₂₁H₂₀N₂O₂: 332.1525, found: 332.1523. Anal. Calcd for C₂₁H₂₀N₂O₂·0.05CH₂Cl₂: C, 75.10; H, 6.02; N, 8.32. Found: C, 75.45; H, 6.16; N, 7.93.

4.5.6. 3-(4-Hexyloxyphenyl)-5-(3-cyanophenyl)-isoxazole 1f. ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 8.06 (d, 1H, J=7.8 Hz), 7.78 (d, 2H, J=8.7 Hz), 7.73 (d, 1H, J=7.8 Hz), 7.62 (t, 1H, J=7.8 Hz), 6.99 (d, 2H, J=8.7 Hz), 6.87 (s, 1H), 4.01 (t, 2H, J=6.6 Hz), 1.77–1.84 (m, 2H), 1.32–1.50 (m, 6H), 0.91 (t, 3H, J=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 114.9, 113.5, 98.7, 68.2, 31.6, 29.1, 25.7, 22.6, 14.0; IR (KBr) 3126, 2952, 2924, 2855, 2230, 1611, 1529, 1438, 1389, 1293, 1254, 1178 cm⁻¹; HRMS (EI⁺) calcd for C₂₂H₂₂N₂O₂: 346.1681, found: 346.1680. Anal. Calcd for C₂₂H₂₂N₂O₂·0.2hexane: C, 76.62; H, 6.87; N, 7.70. Found: C, 76.43; H, 7.14; N, 7.75.

4.5.7. 3-(**4**-Heptyloxyphenyl)-**5**-(**3**-cyanophenyl)-isoxazole 1g. ¹H NMR (300 MHz, CDCl₃) δ 8.11 (s, 1H), 8.07 (d, 1H, *J*=7.8 Hz), 7.79 (d, 2H, *J*=8.7 Hz), 7.73 (d, 1H, *J*=7.8 Hz), 7.63 (t, 1H, *J*=7.8 Hz), 7.00 (d, 2H, *J*=8.7 Hz), 6.87 (s, 1H), 4.02 (t, 2H, *J*=6.6 Hz), 1.77–1.86 (m, 2H), 1.29–1.50 (m, 8H), 0.90 (t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 115.0, 113.5, 98.7, 68.2, 31.9, 29.2, 29.0, 26.0, 22.6, 14.1; IR (KBr) 3124, 2961, 2912, 2854, 2234, 1612, 1530, 1436, 1392, 1301, 1264, 1177 cm⁻¹; HRMS (EI⁺) calcd for C₂₃H₂₄N₂O₂·0.1hexane: C, 76.70; H, 6.85; N, 7.68. Found: C, 76.54; H, 7.15; N, 7.46.

4.5.8. 3-(**4**-Octyloxyphenyl)-**5**-(**3**-cyanophenyl)-isoxazole **1h.** ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 8.06 (d, 1H, *J*=7.8 Hz), 7.78 (d, 2H, *J*=8.7 Hz), 7.73 (d, 1H, *J*= 7.8 Hz), 7.63 (t, 1H, *J*=7.8 Hz), 6.99 (d, 2H, *J*=8.7 Hz), 6.87 (s, 1H), 4.01 (t, 2H, *J*=6.6 Hz), 1.79–1.84 (m, 2H), 1.29–1.50 (m, 10H), 0.89 (t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 115.0, 113.6, 98.7, 68.2, 31.8, 29.3, 29.2×2, 26.0, 22.7, 14.1; IR (KBr) 3123, 2960, 2921, 2854, 2236, 1616, 1533, 1437, 1390, 1300, 1268, 1178 cm⁻¹; HRMS (EI⁺) calcd for C₂₄H₂₆N₂O₂: C, 76.98; H, 7.00; N, 7.48. Found: C, 76.75; H, 7.27; N, 7.20.

4.5.9. 3-(**4**-Nonyloxyphenyl)-**5**-(**3**-cyanophenyl)-isoxazole **1i.** ¹H NMR (300 MHz, CDCl₃) δ 8.11 (s, 1H), 8.06 (d, 1H, J=7.8 Hz), 7.78 (d, 2H, J=8.7 Hz), 7.73 (d, 1H, J=7.8 Hz), 7.62 (t, 1H, J=7.8 Hz), 6.99 (d, 2H, J=8.7 Hz), 6.87 (s, 1H), 4.01 (t, 2H, J=6.6 Hz), 1.78–1.83 (m, 2H), 1.28–1.50 (m, 12H), 0.90 (t, 3H, J=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 115.0, 113.5, 98.7, 68.2, 31.9, 29.5, 29.4, 29.2×2, 26.0, 22.7, 14.1; IR (KBr) 3121, 2958, 2922, 2850, 2235, 1613, 1532, 1436, 1390, 1296, 1263, 1176 cm⁻¹; HRMS (EI⁺) calcd for C₂₅H₂₈N₂O₂: 388.2151, found: 388.2150. Anal. Calcd for C₂₅H₂₈N₂O₂·0.2hexane: C, 77.56; H, 7.65; N, 6.90. Found: C, 77.38; H, 7.76; N, 6.62.

4.5.10. 3-(4-Decyloxyphenyl)-5-(3-cyanophenyl)-isoxazole 1j. ¹H NMR (300 MHz, CDCl₃) δ 8.11 (s, 1H), 8.06 (d, 1H, *J*=7.8 Hz), 7.78 (d, 2H, *J*=8.7 Hz), 7.73 (d, 1H, *J*= 7.8 Hz), 7.62 (t, 1H, *J*=7.8 Hz), 6.99 (d, 2H, *J*=8.7 Hz), 6.87 (s, 1H), 4.01 (t, 2H, *J*=6.6 Hz), 1.77–1.86 (m, 2H), 1.28– 1.54 (m, 14H), 0.88 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 162.9, 160.9, 133.2, 130.0, 129.7, 129.2, 128.8, 128.2, 120.7, 118.0, 115.0, 113.5, 98.7, 68.2, 31.9, 29.5, 29.4, 29.3, 29.2, 26.0, 22.7, 14.1; IR (KBr) 3131, 2953, 2916, 2850, 2232, 1611, 1531, 1436, 1390, 1299, 1262, 1177 cm⁻¹; HRMS (EI⁺) calcd for $C_{26}H_{30}N_2O_2$: 402.2307, found: 402.2306. Anal. Calcd for $C_{26}H_{30}N_2O_2$: C, 77.58; H, 7.51; N, 6.96. Found: C, 77.39; H, 7.69; N, 6.83.

4.5.11. 3-(4-Methoxyphenyl)-5-(4-cyanophenyl)-isoxazole 2a. ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, 2H, *J*= 8.7 Hz), 7.80 (d, 2H, *J*=9.0 Hz), 7.79 (d, 2H, *J*=8.7 Hz), 7.01 (d, 2H, *J*=9.0 Hz), 6.91 (s, 1H), 3.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 162.9, 161.3, 132.8, 131.2, 128.2, 126.2, 121.0, 118.2, 114.4, 113.5, 99.4, 55.4; IR (KBr) 3109, 2963, 2840, 2230, 1611, 1530, 1500, 1431, 1297, 1254, 1178 cm⁻¹; HRMS (EI⁺) calcd for C₁₇H₁₂N₂O₂: 276.0899, found: 276.0899. Anal. Calcd for C₁₇H₁₂N₂O₂·0.25H₂O: C, 72.72; H, 4.49; N, 9.98. Found: C, 72.98; H, 4.42; N, 9.80.

4.5.12. 3-(**4**-Ethoxyphenyl)-**5**-(**4**-cyanophenyl)-isoxazole **2b.** ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, 2H, *J*=8.7 Hz), 7.76–7.81 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.90 (s, 1H), 4.10 (q, 2H, *J*=6.9 Hz), 1.45 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.7, 132.8, 131.3, 128.2, 126.2, 120.8, 118.2, 114.9, 113.5, 99.4, 63.6, 14.7; IR (KBr) 3107, 2997, 2938, 2886, 2231, 1611, 1529, 1499, 1437, 1296, 1254, 1179 cm⁻¹; HRMS (EI⁺) calcd for C₁₈H₁₄N₂O₂: 290.1055, found: 290.1059. Anal. Calcd for C₁₈H₁₄N₂O₂: C, 74.47; H, 4.86; N, 9.65. Found: C, 74.63; H, 4.66; N, 9.62.

4.5.13. 3-(4-Propoxyphenyl)-5-(4-cyanophenyl)-isoxazole 2c. ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, 2H, J= 9.0 Hz), 7.77–7.81 (m, 4H), 7.00 (d, 2H, J=9.0 Hz), 6.91 (s, 1H), 3.99 (t, 2H, J=6.6 Hz), 1.79–1.91 (m, 2H), 1.06 (t, 3H, J=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 69.6, 22.5, 10.5; IR (KBr) 3109, 2973, 2933, 2876, 2229, 1611, 1530, 1498, 1432, 1298, 1261, 1176 cm⁻¹; HRMS (EI⁺) calcd for C₁₉H₁₆N₂O₂: 304.1212, found: 304.1206. Anal. Calcd for C₁₉H₁₆N₂O₂: C, 74.98; H, 5.30; N, 9.20. Found: C, 74.78; H, 4.92; N, 9.06.

4.5.14. 3-(**4**-Butoxyphenyl)-5-(**4**-cyanophenyl)-isoxazole **2d.** ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, 2H, *J*=8.7 Hz), 7.77–7.81 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.91 (s, 1H), 4.02 (t, 2H, *J*=6.6 Hz), 1.75–1.85 (m, 2H), 1.48–1.58 (m, 2H), 0.99 (t, 3H, *J*=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 67.9, 31.2, 19.2, 13.8; IR (KBr) 3110, 2959, 2926, 2874, 2228, 1611, 1531, 1499, 1433, 1297, 1260, 1177 cm⁻¹; HRMS (EI⁺) calcd for C₂₀H₁₈N₂O₂: 318.1368, found: 318.1364. Anal. Calcd for C₂₀H₁₈N₂O₂: C, 75.45; H, 5.70; N, 8.80. Found: C, 75.81; H, 5.59; N, 8.75.

4.5.15. 3-(**4**-Pentyloxyphenyl)-**5**-(**4**-cyanophenyl)-isoxazole **2e.** ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, 2H, *J*= 8.7 Hz), 7.77–7.80 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.91 (s, 1H), 4.02 (t, 2H, *J*=6.6 Hz), 1.80–1.85 (m, 2H), 1.38– 1.48 (m, 4H), 0.94 (t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 68.2, 28.9, 28.2, 22.4, 14.0; IR (KBr) 3139, 2962, 2926, 2858, 2224, 1607, 1531, 1499, 1434, 1290, 1252, 1181 cm⁻¹; HRMS (EI⁺) calcd for $C_{21}H_{20}N_2O_2$: 332.1525, found: 332.1524. Anal. Calcd for $C_{21}H_{20}N_2O_2 \cdot 0.2$ MeCN: C, 75.46; H, 6.10; N, 9.05. Found: C, 75.32; H, 5.75; N, 9.17.

4.5.16. 3-(**4**-Hexyloxyphenyl)-**5**-(**4**-cyanophenyl)-isoxazole **2f.** ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, 2H, *J*= 8.7 Hz), 7.77–7.80 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.91 (s, 1H), 4.01 (t, 2H, *J*=6.6 Hz), 1.76–1.86 (m, 2H), 1.32– 1.50 (m, 6H), 0.91 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 68.2, 31.6, 29.1, 25.7, 22.6, 14.0; IR (KBr) 3135, 2953, 2920, 2855, 2228, 1611, 1528, 1501, 1431, 1288, 1254, 1173 cm⁻¹; HRMS (EI⁺) calcd for C₂₂H₂₂N₂O₂: 346.1681, found: 346.1681. Anal. Calcd for C₂₂H₂₂N₂O₂: C, 76.28; H, 6.40; N, 8.09. Found: C, 76.21; H, 6.72; N, 7.98.

4.5.17. 3-(4-Heptyloxyphenyl)-5-(4-cyanophenyl)-isoxazole 2g. ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, 2H, *J*= 8.7 Hz), 7.76–7.80 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.91 (s, 1H), 4.01 (t, 2H, *J*=6.6 Hz), 1.77–1.86 (m, 2H), 1.31– 1.57 (m, 8H), 0.90 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 68.2, 31.8, 29.2, 29.0, 26.0, 22.6, 14.1; IR (KBr) 3136, 2943, 2925, 2869, 2228, 1612, 1531, 1498, 1433, 1294, 1256, 1179 cm⁻¹; HRMS (EI⁺) calcd for C₂₃H₂₄N₂O₂: 360.1838, found: 360.1835. Anal. Calcd for C₂₃H₂₄N₂O₂·0.25hexane: C, 77.03; H, 7.26; N, 7.33. Found: C, 76.93; H, 7.13; N, 7.69.

4.5.18. 3-(4-Octyloxyphenyl)-5-(4-cyanophenyl)-isoxazole 2h. ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, 2H, *J*= 8.7 Hz), 7.76–7.81 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.91 (s, 1H), 4.01 (t, 2H, *J*=6.6 Hz), 1.76–1.86 (m, 2H), 1.29– 1.47 (m, 10H), 0.89 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 68.2, 31.8, 29.3, 29.2×2, 26.0, 22.7, 14.1; IR (KBr) 3099, 2953, 2925, 2855, 2228, 1610, 1530, 1498, 1430, 1293, 1255, 1177 cm⁻¹; HRMS (EI⁺) calcd for C₂₄H₂₆N₂O₂: 374.1994, found: 374.1989. Anal. Calcd for C₂₄H₂₆N₂O₂. 0.125CH₂Cl₂: C, 75.24; H, 6.87; N, 7.27. Found: C, 74.91; H, 7.24; N, 6.96.

4.5.19. 3-(**4**-Nonyloxyphenyl)-**5**-(**4**-cyanophenyl)-isoxazole 2i. ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, 2H, *J*= 8.7 Hz), 7.76–7.81 (m, 4H), 6.99 (d, 2H, *J*=8.7 Hz), 6.90 (s, 1H), 4.01 (t, 2H, *J*=6.6 Hz), 1.76–1.86 (m, 2H), 1.28– 1.49 (m, 12H), 0.88 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 68.2, 31.9, 29.5, 29.4, 29.2×2, 26.0, 22.7, 14.1; IR (KBr) 3118, 2952, 2917, 2853, 2240, 1617, 1531, 1504, 1441, 1295, 1250, 1178 cm⁻¹; HRMS (EI⁺) calcd for C₂₅H₂₈N₂O₂: 388.2151, found: 388.2151. Anal. Calcd for C₂₅H₂₈N₂O₂: C, 77.29; H, 7.26; N, 7.21. Found: C, 77.26; H, 7.52; N, 7.06.

4.5.20. 3-(**4-Decyloxyphenyl**)-**5**-(**4-cyanophenyl**)-isoxazole **2j.** ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, 2H, J= 8.7 Hz), 7.76–7.81 (m, 4H), 6.99 (d, 2H, J=8.7 Hz), 6.91 (s, 1H), 4.01 (t, 2H, J=6.6 Hz), 1.76–1.83 (m, 2H), 1.28– 1.49 (m, 14H), 0.88 (t, 3H, J=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 162.9, 160.9, 132.8, 131.3, 128.2, 126.2, 120.7, 118.2, 115.0, 113.5, 99.4, 68.2, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 26.0, 22.7, 14.1; IR (KBr) 3121, 2955, 2920, 2851, 2234, 1611, 1528, 1502, 1437, 1292, 1254, 1177 cm⁻¹; HRMS (EI⁺) calcd for C₂₆H₃₀N₂O₂: 402.2307, found: 402.2305. Anal. Calcd for C₂₆H₃₀N₂O₂: C, 77.89; H, 7.96; N, 6.61. Found: C, 77.95; H, 7.92; N, 6.88.

4.6. General procedure for the preparation of 3,5-diphenyl isoxazoles 3a–j, 4a–j, 5a–j, and 6a–j

Forty portions of the solid-attached phenylacetylene 11 (50 mg, 0.03 mmol) were shaken with triethylamine (0.04 ml) in DCM (1 ml) for 5 min. Solutions of 4-[(tertbutyldimethylsilyl)oxy]benzohydroximoyl chloride 13 (0.24 mmol each) in DCM (1 ml each) were added to the resin portions and the mixtures were shaken for 24 h at room temperature. The resins were washed with DMF, MeOH, and DCM (5×10 ml each). After drying in vacuo, the resins were swollen in THF (1 ml, 30 min each). THF solutions of TBAF (24 mg, 0.09 ml each) were added to the resin portions, and the mixtures were stirred for 1 h. The resins were washed with DMF, MeCN, and DCM (5 \times 10 ml each). Benzoic acids 17a-j,¹⁹ 18a-j,²⁰ 19a-j,²¹ and **20a** $-j^{22}$ (0.24 mmol each), N,N'-diisopropylcarbodiimide (0.05 ml, 0.3 mmol each), DMAP (11 mg, 0.09 mmol each), and DMF (1.5 ml each) were added to the resin portions. After shaking for 24 h at room temperature, the resins were washed with DMF, MeCN, and DCM (5×10 ml each). The polymer-attached isoxazoles with pyridine $(14 \mu l,$ 0.18 mmol) and trifluoromethanesulfonic anhydride (10 ul. 0.06 mmol) in DCM (1.5 ml) were shaken for 4 h. After filtering off the resins, the filtrates were concentrated, and purified by column chromatography on SiO₂ (100% DCM) to give the isoxazoles 3a-j, 4a-j, 5a-j, and 6a-j as white solid.

4.6.1. 3-[**4-(4-Methoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 3a.** ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, 2H, *J*=9.0 Hz), 7.92–7.98 (m, 4H), 7.80 (d, 2H, *J*= 8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.01 (d, 2H, *J*=9.0 Hz), 6.97 (s, 1H), 3.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 164.6, 164.1, 162.6, 152.8, 132.9, 132.4, 131.0, 128.1, 126.3, 126.1, 122.6, 121.5, 118.1, 114.0, 113.8, 99.6, 55.5; IR (KBr) 3127, 2975, 2924, 2847, 2229, 1731, 1604, 1510, 1433, 1258, 1213, 1163 cm⁻¹; HRMS (FAB⁺) calcd for C₂₄H₁₇N₂O₄ (M+H⁺): 397.1188, found: 397.1187. Anal. Calcd for C₂₄H₁₆N₂O₂·0.2CH₂Cl₂·0.2H₂O: C, 70.85; H, 4.49; N, 6.51. Found: C, 71.09; H, 4.17; N, 6.28.

4.6.2. 3-[**4-**(**4-**Ethoxybenzoyloxy)phenyl]-**5-**(**4-**cyanophenyl)-isoxazole **3b.** ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.0 Hz), 7.91–7.97 (m, 4H), 7.80 (d, 2H, *J*= 9.0 Hz), 7.36 (d, 2H, *J*=9.0 Hz), 6.99 (d, 2H, *J*=9.0 Hz), 6.97 (s, 1H), 4.14 (q, 2H, *J*=6.9 Hz), 1.47 (t, 3H, *J*= 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.7, 163.5, 162.6, 152.7, 132.9, 132.4, 131.1, 128.1, 126.3, 126.0, 122.6, 121.2, 118.2, 114.4, 113.7, 99.6, 63.9, 14.7; IR (KBr) 3124, 2983, 2936, 2224, 1734, 1606, 1509, 1432, 1257, 1215, 1166 cm⁻¹; HRMS (FAB⁺) calcd for C₂₅H₁₉N₂O₄ (M+H⁺): 411.1345, found: 411.1343. Anal. Calcd for C₂₅H₁₈N₂O₂: C, 73.16; H, 4.42; N, 6.83. Found: C, 72.82; H, 4.78; N, 7.09.

4.6.3. 3-[**4-**(**4-Propoxybenzoyloxy**)**phenyl**]-**5-**(**4-cyanophenyl**)-**isoxazole 3c.** ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.0 Hz), 7.91–7.98 (m, 4H), 7.80 (d, 2H, *J*= 9.0 Hz), 7.36 (d, 2H, *J*=9.0 Hz), 6.99 (d, 2H, *J*=9.0 Hz), 6.97 (s, 1H), 4.02 (t, 2H, *J*=6.6 Hz), 1.83–1.90 (m, 2H), 1.07 (t, 3H, *J*=7.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 164.6, 163.8, 162.6, 152.8, 132.9, 132.4, 131.1, 128.1, 126.3, 126.0, 122.6, 121.2, 118.1, 114.4, 113.7, 99.6, 69.8, 22.5, 10.4; IR (KBr) 3127, 2965, 2872, 2226, 1720, 1602, 1509, 1436, 1257, 1213, 1172 cm⁻¹; HRMS (FAB⁺) calcd for C₂₆H₂₁N₂O₄ (M+H⁺): 425.1501, found: 425.1504. Anal. Calcd for C₂₆H₂₀N₂O₂·0.05CH₂Cl₂: C, 72.98; H, 4.73; N, 6.53. Found: C, 72.58; H, 4.78; N, 6.92.

4.6.4. 3-[**4-**(**4-**butoxybenzoyloxy)phenyl]-**5-**(**4-**cyanophenyl)-isoxazole 3d. ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.3 Hz), 7.96 (d, 2H, *J*=8.7 Hz), 7.93 (d, 2H, *J*= 8.7 Hz), 7.80 (d, 2H, *J*=9.0 Hz), 7.36 (d, 2H, *J*=9.0 Hz), 6.99 (d, 2H, *J*=9.3 Hz), 6.97 (s, 1H), 4.06 (t, 2H, *J*= 6.6 Hz), 1.77–1.87 (m, 2H), 1.46–1.59 (m, 2H), 1.00 (t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.7, 163.8, 162.6, 152.7, 132.9, 132.4, 131.1, 128.1, 126.3, 126.0, 122.6, 121.1, 118.2, 114.4, 113.7, 99.6, 68.0, 31.1, 19.2, 13.8; IR (KBr) 3126, 2944, 2875, 2226, 1721, 1602, 1509, 1435, 1257, 1213, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₂₇H₂₃N₂O₄ (M+H⁺): 439.1658, found: 439.1662. Anal. Calcd for C₂₇H₂₂N₂O₂: C, 73.96; H, 5.06; N, 6.39. Found: C, 73.98; H, 5.16; N, 6.28.

4.6.5. 3-[**4-(4-Pentyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 3e.** ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.0 Hz), 7.96 (d, 2H, *J*=8.7 Hz), 7.92 (d, 2H, *J*= 8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*=8.7 Hz), 6.99 (d, 2H, *J*=9.0 Hz), 6.97 (s, 1H), 4.05 (t, 2H, *J*= 6.6 Hz), 1.79–1.88 (m, 2H), 1.37–1.50 (m, 4H), 0.95 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 164.7, 163.7, 162.6, 152.7, 132.9, 132.4, 131.1, 128.0, 126.3, 126.0, 122.6, 121.1, 118.2, 114.4, 113.7, 99.6, 68.3, 28.8, 28.1, 22.4, 14.0; IR (KBr) 3128, 2947, 2872, 2228, 1720, 1603, 1511, 1435, 1260, 1216, 1174 cm⁻¹; HRMS (FAB⁺) calcd for C₂₈H₂₅N₂O₄ (M+H⁺): 453.1814, found: 453.1815. Anal. Calcd for C₂₈H₂₄N₂O₂·0.1MeCN: C, 74.18; H, 5.36; N, 6.44. Found: C, 74.28; H, 4.98; N, 6.63.

4.6.6. 3-[4-(4-Hexyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 3f. ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.0 Hz), 7.96 (d, 2H, *J*=8.7 Hz), 7.93 (d, 2H, *J*= 8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 6.99 (d, 2H, *J*=9.0 Hz), 6.97 (s, 1H), 4.06 (t, 2H, *J*= 6.6 Hz), 1.78–1.88 (m, 2H), 1.33–1.51 (m, 6H), 0.92 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.7, 163.8, 162.6, 152.7, 132.9, 132.4, 131.1, 128.1, 126.3, 126.0, 122.6, 121.1, 118.1, 114.4, 113.7, 99.6, 68.4, 31.5, 29.0, 25.6, 22.6, 14.0; IR (KBr) 3127, 2920, 2874, 2227, 1721, 1604, 1510, 1435, 1257, 1214, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₂₉H₂₇N₂O₄ (M+H⁺): 467.1971, found: 467.1973. Anal. Calcd for C₂₉H₂₆N₂O₂·0.25H₂O: C, 73.95; H, 5.65; N, 5.95. Found: C, 73.79; H, 5.85; N, 5.76.

4.6.7. 3-[4-(4-Heptyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 3g. ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, 2H, *J*=9.0 Hz), 7.95 (d, 2H, *J*=8.7 Hz), 7.92 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*=8.7 Hz),

6.98 (d, 2H, *J*=9.0 Hz), 6.96 (s, 1H), 4.05 (t, 2H, *J*=6.6 Hz), 1.78–1.87 (m, 2H), 1.32–1.51 (m, 8H), 0.90 (t, 3H, *J*= 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 164.6, 163.7, 162.6, 152.7, 132.9, 132.3, 131.1, 128.0, 126.3, 126.0, 122.6, 121.1, 118.1, 114.4, 113.7, 99.6, 68.4, 31.7, 29.1, 29.0, 25.9, 22.6, 14.1; IR (KBr) 3126, 2921, 2850, 2225, 1721, 1602, 1509, 1436, 1257, 1213, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₃₀H₂₉N₂O₄ (M+H⁺): 481.2127, found: 481.2126. Anal. Calcd for C₃₀H₂₈N₂O₂: C, 74.98; H, 5.87; N, 5.83. Found: C, 74.80; H, 5.99; N, 5.78.

4.6.8. 3-[**4-**(**4-**Octyloxybenzoyloxy)phenyl]-**5-**(**4-**cyanophenyl)-isoxazole 3h. ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.0 Hz), 7.96 (d, 2H, *J*=8.7 Hz), 7.93 (d, 2H, *J*= 8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 6.97–7.00 (m, 3H), 4.05 (t, 2H, *J*=6.6 Hz), 1.78–1.88 (m, 2H), 1.25–1.48 (m, 10H), 0.90 (t, 3H, *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.7, 163.7, 162.6, 152.7, 132.9, 132.4, 131.1, 128.1, 126.3, 126.0, 122.6, 121.1, 118.2, 114.4, 113.7, 99.6, 68.4, 31.8, 29.3, 29.2, 29.1, 26.0, 22.6, 14.1; IR (KBr) 3127, 2919, 2851, 2227, 1721, 1604, 1509, 1436, 1257, 1213, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₃₁H₃₁N₂O₄ (M+H⁺): 495.2284, found: 495.2283. Anal. Calcd for C₃₁H₃₀N₂O₂·0.5H₂O: C, 73.94; H, 6.20; N, 5.56. Found: C, 73.92; H, 6.03; N, 5.82.

4.6.9. 3-[**4-(4-Nonyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 3i.** ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, 2H, *J*=8.7 Hz), 7.96 (d, 2H, *J*=8.7 Hz), 7.92 (d, 2H, *J*= 8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*=8.7 Hz), 6.97–7.00 (m, 3H), 4.05 (t, 2H, *J*=6.6 Hz), 1.78–1.85 (m, 2H), 1.28–1.48 (m, 12H), 0.89 (t, 3H, *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 164.7, 163.7, 162.5, 152.7, 132.9, 132.3, 131.0, 128.0, 126.3, 126.0, 122.6, 121.0, 118.2, 114.3, 113.6, 99.6, 68.3, 31.9, 29.5, 29.3, 29.2, 29.1, 26.0, 22.7, 14.1; IR (KBr) 3127, 2918, 2848, 2233, 1729, 1607, 1510, 1434, 1260, 1209, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₃₂H₃₂N₂O₄ (M+H⁺): 509.2440, found: 509.2442. Anal. Calcd for C₃₂H₃₁N₂O₂·0.2MeCN: C, 75.30; H, 6.36; N, 5.96. Found: C, 75.41; H, 6.10; N, 5.97.

4.6.10. 3-[**4**-(**4**-Decyloxybenzoyloxy)phenyl]-**5**-(**4**-cyanophenyl)-isoxazole **3j.** ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, 2H, *J*=9.0 Hz), 7.96 (d, 2H, *J*=8.7 Hz), 7.93 (d, 2H, *J*=8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 6.99 (d, 2H, *J*=9.0 Hz), 6.97 (s, 1H), 4.05 (t, 2H, *J*=6.6 Hz), 1.78–1.85 (m, 2H), 1.29–1.49 (m, 14H), 0.89 (t, 3H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 164.6, 163.7, 162.6, 152.7, 132.9, 132.3, 131.1, 128.0, 126.3, 126.0, 122.6, 121.1, 118.1, 114.4, 113.7, 99.6, 68.4, 31.9, 29.5, 29.3×2, 29.1, 26.0, 22.7, 14.1; IR (KBr) 3127, 2918, 2850, 2227, 1721, 1603, 1509, 1436, 1258, 1213, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₃₃H₃₅N₂O₄ (M+H⁺): 523.2597, found: 523.2607. Anal. Calcd for C₃₂H₃₁N₂O₂: C, 75.84; H, 6.56; N, 5.36. Found: C, 75.77; H, 6.62; N, 5.24.

4.6.11. 3-[4-(3,4-Dimethoxybenzoyloxy)phenyl]-5-(4cyanophenyl)-isoxazole 4a. ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, 2H, *J*=8.7 Hz), 7.93 (d, 2H, *J*=8.7 Hz), 7.88 (dd, 1H, *J*=8.4, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.68 (d, 1H, *J*=2.1 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 6.97 (d, 1H, *J*= 8.4 Hz), 6.97 (s, 1H), 3.99 (s, 3H), 3.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.7, 162.5, 153.8, 152.7, 148.9, 132.9, 131.1, 128.1, 126.3, 126.1, 124.6, 122.6, 121.5, 118.1, 113.7, 112.4, 110.4, 99.6, 56.1×2; IR (KBr) 3120, 2922, 2850, 2229, 1712, 1595, 1519, 1436, 1278, 1212, 1167, 1143 cm⁻¹; HRMS (FAB⁺) calcd for C₂₅H₁₉N₂O₅ (M+H⁺): 427.1294, found: 427.1298. Anal. Calcd for C₂₅H₁₈N₂O₂: C, 70.42; H, 4.25; N, 6.57. Found: C, 70.21; H, 4.43; N, 6.49.

4.6.12. 3-[**4-**(**3,4-Diethoxybenzoyloxy**)**phenyl**]-**5-**(**4-cyanophenyl**)-**isoxazole 4b.** ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.97 (m, 4H), 7.84 (dd, 1H, J=8.4, 2.1 Hz), 7.80 (d, 2H, J=8.7 Hz), 7.68 (d, 1H, J=2.1 Hz), 7.35 (d, 2H, J= 8.7 Hz), 6.94–6.97 (m, 2H), 4.15–4.24 (m, 4H), 1.48–1.54 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.7, 162.6, 153.6, 152.7, 148.3, 132.9, 131.1, 128.1, 126.3, 126.1, 124.5, 122.6, 121.2, 118.1, 114.2, 113.7, 111.7, 99.6, 64.7, 64.6, 14.7, 14.6; IR (KBr) 3126, 2983, 2939, 2230, 1720, 1599, 1521, 1434, 1281, 1213, 1170, 1133 cm⁻¹; HRMS (FAB⁺) calcd for C₂₇H₂₃N₂O₅ (M+H⁺): 455.1607, found: 455.1606. Anal. Calcd for C₂₇H₂₂N₂O₂·0.25H₂O: C, 70.65; H, 4.94; N, 6.10. Found: C, 70.60; H, 5.04; N, 6.10.

4.6.13. 3-[**4-(3,4-Dipropoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 4c.** ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.97 (m, 4H), 7.83 (dd, 1H, *J*=8.4, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.68 (d, 1H, *J*=2.1 Hz), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 6.95 (d, 1H, *J*=8.4 Hz), 4.03–4.09 (m, 4H), 1.83–1.97 (m, 4H), 1.05–1.11 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.0, 152.7, 148.7, 132.9, 131.1, 128.0, 126.3, 126.0, 124.5, 122.6, 121.1, 118.1, 114.7, 113.7, 112.0, 99.6, 70.8, 70.5, 22.5, 22.4, 10.5, 10.4; IR (KBr) 3128, 2967, 2878, 2225, 1726, 1596, 1519, 1432, 1279, 1199, 1170, 1142 cm⁻¹; HRMS (FAB⁺) calcd for C₂₉H₂₇N₂O₅ (M+H⁺): 483.1920, found: 483.1915. Anal. Calcd for C₂₉H₂₆N₂O₂: C, 72.18; H, 5.43; N, 5.81. Found: C, 72.23; H, 5.54; N, 5.77.

4.6.14. 3-[**4**-(**3**,**4**-Dibutoxybenzoyloxy)phenyl]-**5**-(**4**-cyanophenyl)-isoxazole **4d.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.83 (dd, 1H, *J*=8.4, 1.8 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=1.8 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 6.95 (d, 1H, *J*=8.4 Hz), 4.07–4.13 (m, 4H), 1.80–1.91 (m, 4H), 1.47–1.59 (m, 4H), 0.97–1.03 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.1, 152.7, 148.7, 132.9, 131.1, 128.1, 126.3, 126.0, 124.5, 122.6, 121.1, 118.1, 114.6, 113.7, 111.9, 99.6, 69.1, 68.8, 31.2, 31.1, 19.2, 19.1, 13.9, 13.8; IR (KBr) 3128, 2957, 2873, 2225, 1726, 1596, 1519, 1432, 1281, 1200, 1170, 1144 cm⁻¹; HRMS (FAB⁺) calcd for C₃₁H₃₁N₂O₅ (M+H⁺): 511.2233, found: 511.2233. Anal. Calcd for C₃₁H₃₀N₂O₂: C, 72.92; H, 5.92; N, 5.49. Found: C, 73.07; H, 5.98; N, 5.44.

4.6.15. 3-[4-(3,4-Dipentyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 4e. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.83 (dd, 1H, *J*=8.4, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=2.1 Hz), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 6.94 (d, 1H, *J*=8.4 Hz), 4.06–4.12 (m, 4H), 1.84–1.91 (m, 4H), 1.37–1.52 (m, 8H), 0.92–0.97 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.1, 152.8, 148.7, 132.9, 131.1, 128.1, 126.3,

126.1, 124.5, 122.6, 121.1, 118.2, 114.6, 113.7, 111.9, 99.6, 69.4, 69.1, 28.8, 28.7, 28.2, 28.1, 22.4, 14.0; IR (KBr) 3128, 2955, 2858, 2227, 1720, 1595, 1522, 1430, 1284, 1207, 1171, 1146 cm⁻¹; HRMS (FAB⁺) calcd for $C_{33}H_{35}N_2O_5$ (M+H⁺): 539.2546, found: 539.2546. Anal. Calcd for $C_{33}H_{34}N_2O_2$: C, 73.58; H, 6.36; N, 5.20. Found: C, 73.61; H, 6.55; N, 5.09.

4.6.16. 3-[4-(3,4-Dihexyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 4f. ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.98 (m, 4H), 7.83 (dd, 1H, *J*=8.7, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=2.1 Hz), 7.36 (d, 2H, *J*= 8.7 Hz), 6.97 (s, 1H), 6.95 (d, 1H, *J*=8.7 Hz), 4.06–4.12 (m, 4H), 1.81–1.92 (m, 4H), 1.34–1.53 (m, 12H), 0.89–0.94 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.1, 152.8, 148.7, 132.9, 131.1, 128.1, 126.3, 126.0, 124.5, 122.6, 121.1, 118.1, 114.6, 113.7, 111.9, 99.6, 69.4, 69.1, 31.5, 29.1, 29.0, 25.7, 22.6, 14.0; IR (KBr) 3128, 2931, 2857, 2227, 1720, 1595, 1523, 1431, 1284, 1209, 1170, 1147 cm⁻¹; HRMS (FAB⁺) calcd for C₃₅H₃₉N₂O₅ (M+H⁺): 567.2859, found: 567.2856. Anal. Calcd for C₃₅H₃₈N₂O₂·0.2MeCN: C, 73.96; H, 6.77; N, 5.36. Found: C, 73.87; H, 6.68; N, 5.40.

4.6.17. 3-[4-(3,4-Diheptyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 4g. ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.98 (m, 4H), 7.83 (dd, 1H, *J*=8.7, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=2.1 Hz), 7.35 (d, 2H, *J*= 8.7 Hz), 6.97 (s, 1H), 6.94 (d, 1H, *J*=8.7 Hz), 4.05–4.12 (m, 4H), 1.81–1.92 (m, 4H), 1.25–1.54 (m, 16H), 0.87–0.92 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.0, 152.7, 148.7, 132.9, 131.1, 128.1, 126.3, 126.0, 124.5, 122.6, 121.1, 118.1, 114.6, 113.7, 111.9, 99.6, 69.4, 69.1, 31.8, 29.2, 29.0, 26.0, 25.9, 22.6, 14.1; IR (KBr) 3128, 2931, 2855, 2227, 1720, 1595, 1523, 1431, 1284, 1207, 1170, 1147 cm⁻¹; HRMS (FAB⁺) calcd for C₃₇H₄₃N₂O₅ (M+H⁺): 595.3172, found: 595.3193. Anal. Calcd for C₃₇H₄₂N₂O₂: C, 74.72; H, 7.12; N, 4.71. Found: C, 74.67; H, 7.13; N, 4.66.

4.6.18. 3-[4-(3,4-Dioctyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 4h. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.83 (dd, 1H, *J*=8.7, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=2.1 Hz), 7.35 (d, 2H, *J*= 8.7 Hz), 6.97 (s, 1H), 6.95 (d, 1H, *J*=8.7 Hz), 4.05–4.12 (m, 4H), 1.81–1.92 (m, 4H), 1.29–1.54 (m, 20H), 0.86–0.90 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.0, 152.7, 148.7, 132.9, 131.1, 128.1, 126.3, 126.0, 124.5, 122.6, 121.1, 118.12, 114.6, 113.7, 111.9, 99.6, 69.4, 69.1, 31.8, 29.3, 29.2, 29.1, 29.0×3, 22.7, 14.1; IR (KBr) 3128, 2919, 2847, 2226, 1720, 1595, 1523, 1431, 1284, 1206, 1170, 1148 cm⁻¹; HRMS (FAB⁺) calcd for C₃₉H₄₇N₂O₅ (M+H⁺): 623.3485, found: 623.3481. Anal. Calcd for C₃₉H₄₆N₂O₂: C, 75.21; H, 7.44; N, 4.50. Found: C, 75.13; H, 7.38; N, 4.40.

4.6.19. 3-[4-(3,4-Dinonyloxybenzoyloxy)phenyl]-5-(4cyanophenyl)-isoxazole 4i. ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.98 (m, 4H), 7.83 (dd, 1H, *J*=8.7, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=2.1 Hz), 7.35 (d, 2H, *J*= 8.7 Hz), 6.98 (s, 1H), 6.94 (d, 1H, *J*=8.7 Hz), 4.05–4.11 (m, 4H), 1.81–1.92 (m, 4H), 1.28–1.58 (m, 24H), 0.85–0.90 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 164.8, 162.6, 154.0, 152.7, 148.6, 132.9, 131.0, 128.0, 126.3, 126.0, 124.5, 122.6, 121.0, 118.2, 114.4, 113.6, 111.8, 99.6, 69.3, 69.0, 31.9, 29.6, 29.4, 29.3, 29.1, 29.0, 26.0, 25.9, 22.7, 14.1; IR (KBr) 3128, 2918, 2847, 2227, 1720, 1596, 1523, 1431, 1285, 1205, 1170, 1148 cm⁻¹; HRMS (FAB⁺) calcd for $C_{41}H_{51}N_2O_5$ (M+H⁺): 651.3798, found: 651.3792. Anal. Calcd for $C_{41}H_{50}N_2O_2$: C, 75.66; H, 7.74; N, 4.30. Found: C, 75.70; H, 7.58; N, 4.20.

4.6.20. 3-[4-(3,4-Didecyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 4j. ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.97 (m, 4H), 7.83 (dd, 1H, *J*=8.7, 2.1 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.67 (d, 1H, *J*=2.1 Hz), 7.35 (d, 2H, *J*= 8.7 Hz), 6.97 (s, 1H), 6.94 (d, 1H, *J*=8.7 Hz), 4.05–4.12 (m, 4H), 1.81–1.90 (m, 4H), 1.28–1.49 (m, 24H), 0.85–0.91 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 154.1, 152.8, 148.7, 132.9, 131.1, 128.1, 126.3, 126.1, 124.5, 122.6, 121.1, 118.1, 114.7, 113.7, 112.0, 99.6, 69.4, 69.1, 31.9, 29.6×2, 29.4×2, 29.3, 29.2, 29.0, 26.0×2, 22.7, 14.1; IR (KBr) 3128, 2918, 2848, 2227, 1721, 1595, 1523, 1431, 1285, 1208, 1170, 1148 cm⁻¹; HRMS (FAB⁺) calcd for C₄₃H₅₅N₂O₅ (M+H⁺): 679.4111, found: 679.4128. Anal. Calcd for C₄₃H₅₄N₂O₂: C, 76.07; H, 8.02; N, 4.13. Found: C, 76.29; H, 8.38; N, 4.36.

4.6.21. 3-[4-(3,5-Dimethoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5a. ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, 2H, *J*=8.7 Hz), 7.94 (d, 2H, *J*=8.7 Hz), 7.80 (d, 2H, *J*=8.4 Hz), 7.35–7.38 (m, 4H), 6.97 (s, 1H), 6.74 (t, 1H, *J*=2.1 Hz), 3.88 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 164.7, 162.5, 160.9, 152.6, 132.9, 131.1, 131.0, 128.1, 126.3×2, 122.5, 118.1, 113.7, 107.8, 106.6, 99.6, 55.7; IR (KBr) 3126, 2981, 2954, 2230, 1738, 1613, 1504, 1428, 1355, 1308, 1209, 1160 cm⁻¹; HRMS (FAB⁺) calcd for C₂₅H₁₉N₂O₅ (M+H⁺): 427.1294, found: 427.1276. Anal. Calcd for C₂₅H₁₈N₂O₂: C, 70.42; H, 4.25; N, 6.57. Found: C, 70.63; H, 4.34; N, 6.44.

4.6.22. 3-[**4-**(**3,5-Diethoxybenzoyloxy**)**phenyl**]-**5-**(**4-cyanophenyl**)-**isoxazole 5b.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.97 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*= 8.7 Hz), 7.33 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*= 2.4 Hz), 4.09 (q, 4H, *J*=6.9 Hz), 1.44 (t, 6H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 160.1, 152.5, 132.9, 131.1, 130.1, 128.1, 126.3, 126.2, 122.5, 118.1, 113.7, 108.3, 107.3, 99.6, 63.9, 14.7; IR (KBr) 3126, 2983, 2926, 2881, 2225, 1730, 1593, 1504, 1439, 1348, 1300, 1204, 1169 cm⁻¹; HRMS (FAB⁺) calcd for C₂₇H₂₃N₂O₅ (M+H⁺): 455.1607, found: 455.1604. Anal. Calcd for C₂₇H₂₂N₂O₂: C, 71.35; H, 4.88; N, 6.16. Found: C, 71.56; H, 5.06; N, 6.11.

4.6.23. 3-[4-(3,5-Dipropoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5c. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.33 (d, 2H, *J*=2.1 Hz), 6.97 (s, 1H), 6.74 (t, 1H, *J*=2.1 Hz), 3.98 (t, 4H, *J*=6.6 Hz), 1.78–1.90 (m, 4H), 1.06 (t, 6H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 160.4, 152.6, 132.9, 131.1, 130.8, 128.1, 126.3×2, 122.5, 118.1, 113.8, 108.3, 107.4, 99.6, 70.0, 22.5, 10.5; IR (KBr) 3126, 2965, 2877, 2225, 1730, 1593, 1504, 1436, 1353, 1296, 1199, 1173 cm⁻¹; HRMS (FAB⁺) calcd for C₂₉H₂₇N₂O₅ (M+H⁺): 483.1920,

found: 483.1921. Anal. Calcd for C₂₉H₂₆N₂O₂: C, 72.18; H, 5.43; N, 5.81. Found: C, 72.22; H, 5.57; N, 5.83.

4.6.24. 3-[**4-**(**3,5-Dibutoxybenzoyloxy**)**pheny**]**-5-**(**4-cyanopheny**]**-isoxazole 5d.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.33 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.02 (t, 4H, *J*=6.6 Hz), 1.75–1.84 (m, 4H), 1.45–1.56 (m, 4H), 0.99 (t, 6H, *J*=7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 160.4, 152.6, 132.9, 131.1, 130.8, 128.1, 126.3, 126.2, 122.5, 118.1, 113.7, 108.3, 107.3, 99.6, 68.1, 31.2, 19.2, 13.8; IR (KBr) 3129, 2957, 2872, 2224, 1733, 1592, 1500, 1438, 1350, 1301, 1209, 1171 cm⁻¹; HRMS (FAB⁺) calcd for C₃₁H₃₁N₂O₅ (M+H⁺): 511.2233, found: 511.2231. Anal. Calcd for C₃₁H₃₀N₂O₂: C, 72.92; H, 5.92; N, 5.49. Found: C, 72.93; H, 6.02; N, 5.47.

4.6.25. 3-[4-(3,5-dipentyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5e. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*= 8.7 Hz), 7.32 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.01 (t, 4H, *J*=6.6 Hz), 1.76–1.86 (m, 4H), 1.36–1.49 (m, 8H), 0.94 (t, 6H, *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 160.3, 152.5, 132.9, 131.0, 130.7, 128.1, 126.3, 126.2, 122.5, 118.1, 113.7, 108.2, 107.2, 99.6, 68.4, 28.8, 28.1, 22.4, 14.0; IR (KBr) 3127, 2957, 2858, 2232, 1733, 1592, 1501, 1450, 1350, 1303, 1200, 1163 cm⁻¹; HRMS (FAB⁺) calcd for C₃₃H₃₅N₂O₅ (M+H⁺): 539.2546, found: 539.2540. Anal. Calcd for C₃₃H₃₄N₂O₂: C, 73.58; H, 6.36; N, 5.20. Found: C, 73.61; H, 6.55; N, 5.09.

4.6.26. 3-[4-(3,5-Dihexyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5f. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.32 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.01 (t, 4H, *J*=6.6 Hz), 1.76–1.85 (m, 4H), 1.32–1.50 (m, 12H), 0.91 (t, 6H, *J*=6.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 164.8, 162.6, 160.4, 152.6, 132.9, 131.1, 130.8, 128.1, 126.3×2, 122.5, 118.1, 113.8, 108.3, 107.3, 99.6, 68.5, 31.6, 29.1, 25.7, 22.6, 14.0; IR (KBr) 3119, 2953, 2856, 2227, 1735, 1596, 1503, 1450, 1350, 1301, 1200, 1163 cm⁻¹; HRMS (FAB⁺) calcd for C₃₅H₃₉N₂O₅ (M+H⁺): 567.2859, found: 567.2866. Anal. Calcd for C₃₅H₃₈N₂O₂: C, 74.18; H, 6.76; N, 4.94. Found: C, 74.19; H, 6.97; N, 4.94.

4.6.27. 3-[4-(3,5-Diheptyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5g. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.32 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.01 (t, 4H, *J*=6.6 Hz), 1.76–1.85 (m, 4H), 1.32–1.47 (m, 16H), 0.90 (t, 6H, *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 160.3, 152.6, 132.9, 131.1, 130.8, 128.1, 126.3, 126.3, 122.5, 118.2, 113.7, 108.2, 107.3, 99.6, 68.4, 31.8, 29.2, 29.0, 26.0, 22.6, 14.1; IR (KBr) 3120, 2923, 2854, 2227, 1735, 1596, 1503, 1450, 1351, 1301, 1200, 1172 cm⁻¹; HRMS (FAB⁺) calcd for C₃₇H₄₃N₂O₅ (M+H⁺): 595.3172, found: 595.3163. Anal. Calcd for C₃₇H₄₂N₂O₂·0.25MeCN: C, 74.45; H, 7.12; N, 5.21. Found: C, 74.50; H, 7.34; N, 5.22.

4.6.28. 3-[**4**-(**3**,**5**-Dioctyloxybenzoyloxy)phenyl]-5-(**4**cyanophenyl)-isoxazole 5h. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.32 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.00 (t, 4H, *J*=6.6 Hz), 1.76–1.83 (m, 4H), 1.25–1.47 (m, 20H), 0.89 (t, 6H, *J*=6.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 164.9, 162.4, 160.4, 152.7, 132.9, 131.1, 130.8, 128.1, 126.3×2, 122.5, 118.2, 113.8, 108.3, 107.5, 99.6, 68.5, 31.8, 29.3, 29.2×2, 26.0, 22.7, 14.1; IR (KBr) 3121, 2921, 2851, 2230, 1734, 1595, 1503, 1450, 1351, 1302, 1200, 1160 cm⁻¹; HRMS (FAB⁺) calcd for C₃₉H₄₇N₂O₅ (M+H⁺): 623.3485, found: 623.3491. Anal. Calcd for C₃₉H₄₆N₂O₂: C, 75.21; H, 7.44; N, 4.50. Found: C, 75.11; H, 7.57; N, 4.50.

4.6.29. 3-[4-(3,5-Dinonyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5i. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.36 (d, 2H, *J*=8.7 Hz), 7.32 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.01 (t, 4H, *J*=6.6 Hz), 1.76–1.85 (m, 4H), 1.28–1.47 (m, 24H), 0.88 (t, 6H, *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 160.4, 152.6, 132.9, 131.1, 130.8, 128.1, 126.3, 126.3, 122.5, 118.1, 113.7, 108.3, 107.3, 99.6, 68.5, 31.9, 29.5, 29.4, 29.2×2, 26.0, 22.7, 14.1; IR (KBr) 3124, 2922, 2852, 2230, 1734, 1595, 1505, 1450, 1350, 1302, 1200, 1160 cm⁻¹; HRMS (FAB⁺) calcd for C₄₁H₅₁N₂O₅ (M+H⁺): 651.3798, found: 651.3795. Anal. Calcd for C₄₁H₅₀N₂O₂: C, 75.66; H, 7.74; N, 4.30. Found: C, 75.55; H, 7.72; N, 4.30.

4.6.30. 3-[4-(3,5-Didecyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 5j. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.97 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.35 (d, 2H, *J*=8.7 Hz), 7.32 (d, 2H, *J*=2.4 Hz), 6.97 (s, 1H), 6.73 (t, 1H, *J*=2.4 Hz), 4.01 (t, 4H, *J*=6.6 Hz), 1.75–1.85 (m, 4H), 1.28–1.47 (m, 28H), 0.88 (t, 6H, *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 160.3, 152.5, 132.9, 131.0, 130.7, 128.1, 126.3×2, 122.5, 118.2, 113.7, 108.2, 107.2, 99.6, 68.4, 31.9, 29.6, 29.5, 29.3×2, 29.1, 26.0, 22.7, 14.1; IR (KBr) 3123, 2921, 2851, 2229, 1733, 1594, 1503, 1450, 1350, 1302, 1201, 1159 cm⁻¹; HRMS (FAB⁺) calcd for C₄₃H₅₅N₂O₅ (M+H⁺): 679.4111, found: 679.4116. Anal. Calcd for C₄₃H₅₄N₂O₂: C, 76.07; H, 8.02; N, 4.13. Found: C, 75.82; H, 8.05; N, 4.39.

4.6.31. 3-[**4-(3,4,5-Trimethoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 6a.** ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, 2H, *J*=8.7 Hz), 7.95 (d, 2H, *J*=8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.47 (s, 2H), 7.36 (d, 2H, *J*=8.7 Hz), 6.98 (s, 1H), 3.96 (s, 3H), 3.96 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 164.6, 162.5, 153.2, 152.6, 143.1, 132.9, 131.1, 128.1, 126.3, 126.1, 124.0, 122.6, 118.1, 113.8, 107.6, 99.6, 61.0, 56.4; IR (KBr) 3122, 2921, 2851, 2229, 1733, 1594, 1503, 1450, 1350, 1201, 1159 cm⁻¹; HRMS (FAB⁺) calcd for C₂₆H₂₁N₂O₆ (M+H⁺): 457.1400, found: 457.1418. Anal. Calcd for C₂₆H₂₀N₂O₂: C, 68.42; H, 4.42; N, 6.14. Found: C, 68.39; H, 4.50; N, 5.97.

4.6.32. 3-[**4-(3,4,5-Triethoxybenzoyloxy)phenyl]-5-(4cyanophenyl)-isoxazole 6b.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.43 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 4.12–4.22 (m, 6H), 1.47 (t, 6H, *J*=7.2 Hz), 1.39 (t, 3H, *J*=7.2 Hz); ¹³C NMR $\begin{array}{l} (75 \ \text{MHz}, \text{CDCl}_3) \, \delta \, 168.3, 164.7, 162.5, 143.0, 152.8, 152.6, \\ 132.9, 131.1, 128.1, 126.3, 126.2, 123.6, 122.6, 118.1, 113.7, \\ 108.7, 99.6, 69.1, 64.9, 15.6, 14.8; IR (KBr) 3109, 2980, \\ 2929, 2229, 1735, 1593, 1500, 1435, 1340, 1194, \\ 1133 \ \text{cm}^{-1}; \ \text{HRMS} \ (\text{FAB}^+) \ \text{calcd} \ \text{for} \ C_{29}\text{H}_{27}\text{N}_2\text{O}_6 \\ (\text{M+H}^+): \ 499.1869, \ \text{found:} \ 499.1864. \ \text{Anal.} \ \text{Calcd} \ \text{for} \\ C_{29}\text{H}_{26}\text{N}_2\text{O}_2: \ \text{C}, \ 69.87; \ \text{H}, \ 5.26; \ \text{N}, \ 5.62. \ \text{Found:} \ \text{C}, \ 69.72; \\ \text{H}, \ 5.34; \ \text{N}, \ 5.56. \end{array}$

4.6.33. 3-[**4-(3,4,5-Tripropoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 6c.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.43 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 4.01–4.08 (m, 6H), 1.74–1.93 (m, 6H), 1.04–1.10 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 153.0, 152.6, 143.2, 132.9, 131.1, 128.1, 126.3, 126.2, 123.5, 122.6, 118.1, 113.7, 108.7, 99.6, 75.2, 70.8, 23.5, 22.6, 10.6, 10.5; IR (KBr) 3125, 2965, 2876, 2231, 1732, 1590, 1502, 1433, 1336, 1196, 1122 cm⁻¹; HRMS (FAB⁺) calcd for C₃₂H₃₃N₂O₆ (M+H⁺): 541.2339, found: 541.2339. Anal. Calcd for C₃₂H₃₂N₂O₂: C, 71.09; H, 5.97; N, 5.18. Found: C, 71.09; H, 6.08; N, 5.14.

4.6.34. 3-[4-(3,4,5-Tributoxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 6d. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.42 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 4.05–4.10 (m, 6H), 1.71–1.88 (m, 6H), 1.47–1.59 (m, 6H), 0.88–1.02 (m, 9H); 1³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 153.0, 152.7, 143.2, 132.9, 131.1, 128.1, 126.3, 126.2, 123.5, 122.6, 118.1, 113.7, 108.6, 99.6, 73.2, 69.0, 32.3, 31.3, 19.3, 19.1, 13.9, 13.8; IR (KBr) 3129, 2931, 2871, 2231, 1731, 1592, 1504, 1432, 1337, 1195, 1128 cm⁻¹; HRMS (FAB⁺) calcd for C₃₅H₃₉N₂O₆ (M+H⁺): 583.2808, found: 583.2811. Anal. Calcd for C₃₅H₃₈N₂O₂: C, 72.14; H, 6.57; N, 4.81. Found: C, 72.35; H, 6.61; N, 4.81.

4.6.35. 3-[**4-(3,4,5-Tripentyloxybenzoyloxy)phenyl]-5-(4cyanophenyl)-isoxazole 6e.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.42 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.98 (s, 1H), 4.03–4.10 (m, 6H), 1.73–1.89 (m, 6H), 1.37–1.51 (m, 12H), 0.91–0.96 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 153.0, 152.6, 143.2, 132.9, 131.0, 128.1, 126.3, 126.2, 123.5, 122.6, 118.1, 113.7, 108.6, 99.6, 73.6, 69.2, 30.0, 28.9, 28.2, 28.1, 22.5, 22.4, 14.1, 14.0; IR (KBr) 3131, 2936, 2871, 2237, 1733, 1588, 1500, 1432, 1341, 1200, 1116 cm⁻¹; HRMS (FAB⁺) calcd for C₃₈H₄₅N₂O₆ (M+H⁺): 625.3278, found: 625.3276. Anal. Calcd for C₃₈H₄₄N₂O₂: C, 73.05; H, 7.10; N, 4.48. Found: C, 73.02; H, 7.25; N, 4.33.

4.6.36. 3-[**4-(3,4,5-Trihexyloxybenzoyloxy)phenyl]-5-(4-cyanophenyl)-isoxazole 6f.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.42 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 4.04–4.09 (m, 6H), 1.72–1.89 (m, 6H), 1.25–1.54 (m, 18H), 0.89–0.93 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 153.0, 152.7, 143.2, 132.9, 131.1, 128.1, 126.3, 126.2, 123.5, 122.6, 118.1, 113.7, 108.6, 99.6, 73.6, 69.3, 31.7, 31.5, 30.3, 29.2, 25.7×2, 22.7, 22.6, 14.1, 14.0; IR (KBr) 3140, 2931, 2859, 2229, 1736, 1588, 1503, 1432, 1337, 1191, 1117 cm⁻¹; HRMS (FAB⁺) calcd for C₄₁H₅₁N₂O₆

(M+H⁺): 667.3747, found: 667.3740. Anal. Calcd for $C_{41}H_{50}N_2O_2$: C, 73.85; H, 7.56; N, 4.20. Found: C, 73.89; H, 7.73; N, 4.14.

4.6.37. 3-[**4**-(**3**,**4**,**5**-**Triheptyloxybenzoyloxy)phenyl**]-**5**-(**4**-**cyanophenyl**)-**isoxazole 6g.** ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.97 (m, 4H), 7.80 (d, 2H, *J*=8.7 Hz), 7.42 (s, 2H), 7.34 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 4.03–4.09 (m, 6H), 1.73–1.89 (m, 6H), 1.26–1.54 (m, 24H), 0.87–0.91 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 153.0, 152.7, 143.2, 132.9, 131.0, 128.1, 126.3, 126.2, 123.5, 122.6, 118.1, 113.7, 108.6, 99.6, 73.6, 69.3, 31.9, 31.8, 30.3, 29.3, 29.2, 29.0, 26.0×2, 22.6×2, 14.1×2; IR (KBr) 3128, 2923, 2853, 2233, 1733, 1587, 1502, 1432, 1338, 1192, 1119 cm⁻¹; HRMS (FAB⁺) calcd for C₄₄H₅₇N₂O₆ (M+H⁺): 709.4217, found: 709.4216. Anal. Calcd for C₄₄H₅₆N₂O₂: C, 74.55; H, 7.96; N, 3.95. Found: C, 74.61; H, 8.17; N, 4.12.

4.6.38. 3-[**4**-(**3**,**4**,**5**-Trioctyloxybenzoyloxy)phenyl]-5-(**4**cyanophenyl)-isoxazole 6h. ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.98 (m, 4H), 7.81 (d, 2H, *J*=8.7 Hz), 7.42 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.97 (s, 1H), 4.03–4.09 (m, 6H), 1.73–1.89 (m, 6H), 1.25–1.57 (m, 30H), 0.86–0.90 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.6, 153.0, 152.7, 143.2, 132.9, 131.0, 128.1, 126.3, 126.2, 123.5, 122.6, 118.6, 113.7, 108.6, 99.6, 73.6, 69.3, 31.9, 31.8, 30.3, 29.5, 29.3×2, 26.1, 22.7×2, 14.1; IR (KBr) 3137, 2954, 2854, 2227, 1732, 1588, 1500, 1431, 1339, 1202, 1119 cm⁻¹; HRMS (FAB⁺) calcd for C₄₇H₆₃N₂O₆ (M+H⁺): 751.4686, found: 751.4686. Anal. Calcd for C₄₇H₆₂N₂O₂·0.5MeCN·0.5EtOAc: C, 73.63; H, 8.34; N, 4.29. Found: C, 74.68; H, 8.55; N, 4.14.

4.6.39. 3-[**4**-(**3**,**4**,**5**-Trinonyloxybenzoyloxy)phenyl]-5-(**4**cyanophenyl)-isoxazole 6i. ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, 2H, J=8.4 Hz), 7.93 (d, 2H, J=8.4 Hz), 7.80 (d, 2H, J=8.7 Hz), 7.42 (s, 2H), 7.34 (d, 2H, J=8.7 Hz), 6.98 (s, 1H), 4.03–4.09 (m, 6H), 1.72–1.88 (m, 6H), 1.28–1.49 (m, 36H), 0.85–0.90 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 153.0, 152.6, 143.1, 132.9, 131.0, 128.1, 126.3, 126.1, 123.4, 122.6, 118.2, 113.7, 108.5, 99.6, 73.6, 69.2, 31.9×2, 30.3, 29.7, 29.6, 29.4, 29.3, 26.1, 26.0, 22.7×2, 14.1; IR (KBr) 3136, 2925, 2854, 2226, 1732, 1588, 1500, 1432, 1339, 1202, 1119 cm⁻¹; HRMS (FAB⁺) calcd for C₅₀H₆₉N₂O₆ (M+H⁺): 793.5156, found: 793.5160. Anal. Calcd for C₄₇H₆₂N₂O₂·0.5MeCN: C, 75.29; H, 8.61; N, 4.30. Found: C, 75.14; H, 8.81; N, 4.40.

4.6.40. 3-[**4**-(**3**,**4**,**5**-Tridecyloxybenzoyloxy)phenyl]-5-(**4**cyanophenyl)-isoxazole **6**j. ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, 2H, *J*=8.4 Hz), 7.94 (d, 2H, *J*=8.4 Hz), 7.81 (d, 2H, *J*=8.7 Hz), 7.42 (s, 2H), 7.35 (d, 2H, *J*=8.7 Hz), 6.98 (s, 1H), 4.03–4.09 (m, 6H), 1.72–1.88 (m, 6H), 1.27–1.49 (m, 42H), 0.85–0.90 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 164.8, 162.5, 153.0, 152.6, 143.2, 132.9, 131.0, 128.1, 126.3, 126.2, 123.4, 122.6, 118.1, 113.7, 108.5, 99.6, 73.6, 69.3, 31.9×2, 30.3, 29.7×2, 29.6×2, 29.4, 29.3×2, 26.1, 26.0, 22.7, 14.1; IR (KBr) 3130, 2920, 2851, 2234, 1736, 1588, 1502, 1433, 1338, 1191, 1120 cm⁻¹; HRMS (FAB⁺) calcd for C₅₃H₇₅N₂O₆ (M+H⁺): 835.5625, found: 835.5632. Anal. Calcd for C₄₇H₆₂N₂O₂: C, 76.22; H, 8.93; N, 3.35. Found: C, 76.55; H, 8.88; N, 3.62.

References and notes

- 1. Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W.; Vill, V. Handbook of Liquid Crystals; VCH: Weinheim, 1998.
- Lagerwall, S.; Dahlgren, A.; Jägemalm, P.; Rudquist, P.; D'havé, K.; Pauwels, H.; Dabrowski, R.; Drzewinski, W. Adv. Funct. Mater. 2001, 11, 87–94; Kirsch, P.; Bremer, M. Angew. Chem., Int. Ed. 2000, 39, 4216–4235.
- Hudson, S. A.; Maitlis, P. M. Chem. Rev. 1993, 93, 861–885; Bruce, D. W. Acc. Chem. Res. 2000, 33, 831–840; Tschierske, C. J. Mater. Chem. 1998, 8, 1485–1508.
- Pelzl, G.; Diele, S.; Weissflog, W. Adv. Mater. 2001, 11, 87–94; Watanabe, J.; Niori, T.; Choi, S. W.; Takanishi, Y.; Takezoe, H. Jpn. J. Appl. Phys. 1998, 37, L401–L403.
- Brown, D. H.; Styring, P. Liq. Cryst. 2003, 30, 23–30; Gallardo, H.; Zucco, C.; Da Silva, L. Mol. Cryst. Liq. Cryst. 2002, 373, 181–190; Bartulin, J.; Martinez, R.; Gallardo, H.; Muller, J.; Taylor, T. R. Mol. Cryst. Liq. Cryst. 1993, 225, 175–182; Bartulin, J.; Martinez, R.; Müller, H. J.; Fan, Z. X.; Haase, W. Mol. Cryst. Liq. Cryst. 1992, 220, 67–75; Barbera, J.; Cativiela, C.; Serrano, J. L.; Zurbano, M. M. Liq. Cryst. 1992, 11, 887–897; Seguel, C. G.; Borchers, B.; Haase, W.; Aguilera, C. Liq. Cryst. 1992, 11, 899–903; Iglesias, R.; Serrano, J. L.; Sierra, T. Liq. Cryst. 1997, 22, 37–46.
- Barbera, J.; Gimenez, R.; Serrano, J. L.; Alcala, R.; Villacampa, B.; Villalba, J.; Ledoux, I.; Zyss, J. *Liq. Cryst.* 1997, 22, 265–273.
- Hashimoto, M.; Mori, A.; Inoue, H.; Nagamiya, H.; Doi, T.; Takahashi, T. *Tetrahedron Lett.* 2003, 44, 1251–1254.
- Mori, A.; Akahoshi, I.; Hashimoto, M.; Doi, T.; Takahashi, T. *Tetrahedron Lett.* 2004, 45, 813–815; Hioki, H.; Fukutaka, M.; Takahashi, H.; Kodama, M.; Kubo, K.; Ideta, K.; Mori, A. *Tetrahedron Lett.* 2004, 45, 7591–7594; Hioki, H.; Fukutaka, M.; Takahashi, H.; Kubo, M.; Matsushita, K.; Kodama, M.; Kubo, K.; Ideta, K.; Mori, A. *Tetrahedron* 2005, 61, 10643–10651.
- Haino, T.; Tanaka, M.; Ideta, K.; Kubo, K.; Mori, A.; Fukazawa, Y. *Tetrahedron Lett.* 2004, 45, 2277–2279.
- Fuchi, N.; Doi, T.; Takahashi, T. *Chem. Lett.* 2005, *34*, 438–439; Fuchi, N.; Doi, T.; Cao, B.; Kahn, M.; Takahashi, T. *Synlett* 2002, 285–289; Bose, D. S.; Jayalakshmi, B. *Synthesis* 1999, 64–65; Kantorowski, E. J.; Kurth, M. J. *Mol. Divers.* 1997, *2*, 207–216.

- Liu, K. C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45, 3916–3918.
- Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440–467.
- 13. Crystallographic data for **3g**: $C_{30}H_{28}N_2O_4$, FW=480.55, monoclinic space group *P*21, *a*=8.222(6) Å, *b*=5.964(5) Å, *c*=50.82(4) Å, β =93.001(14)°, *V*=2489(3) Å³, *T*=293(2) K, and *Z*=4; of 6781 total unique reflections, 3930 were considered observed at the level of $|F_o| > 2.0\sigma|F_o|$. The structure was solved by the direct method (Sir 97). Full-matrix least squares refinements converged to a conventional *R* factor of 0.093, *wR*=0.27, GOF=0.99. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Centre, UK as supplementary publication number CCDC no. 604935.
- Katritzky, A. R.; Button, M. A. C.; Denisenko, S. N. J. Heterocycl. Chem. 2000, 37, 1505–1510.
- Wang, H. J.; Ling, W.; Lu, L. J. Fluorine Chem. 2001, 111, 241–246.
- 16. Weissflog, W.; Schubert, H. J. Prakt. Chem. 1976, 318, 785–794.
- 17. Peake, C. J.; Strickland, J. H. Synth. Commun. 1986, 16, 763–765.
- 18. Miller, C. P.; Kaufman, D. H. Synlett 2000, 1169–1171.
- Malthete, J.; Canceill, J.; Gabard, J.; Jacques, J. *Tetrahedron* 1981, *37*, 2815–2821; Nakai, H.; Konno, M.; Kosuge, S.; Sakuyama, S.; Toda, M.; Arai, Y.; Obata, T.; Katsube, N.; Miyamoto, T.; Okegawa, T.; Kawasaki, A. *J. Med. Chem.* 1988, *31*, 84–91.
- Borisch, K.; Diele, S.; Goring, P.; Kresse, H.; Tschierske, C. J. Mater. Chem. 1998, 8, 529–543.
- Pickaert, G.; Ziessel, R. Synthesis 2004, 16, 2716–2726; Soerme, P.; Arnoux, P.; Kahl-Knutsson, B.; Leffler, H.; Rini, J. M.; Nilsson, U. J. J. Am. Chem. Soc. 2005, 127, 1737– 1743; Mertesdorf, C.; Ringsdorf, H. Liq. Cryst. 1989, 5, 1757–1772.
- Ungar, G.; Abramic, D.; Percec, V.; Heck, J. A. *Liq. Cryst.* 1996, 21, 73–86; Terazzi, E.; Torelli, S.; Bernardinelli, G.; Rivera, J.-P.; Benech, J.-M.; Bourgogne, C.; Donnio, B.; Guillon, D.; Imbert, D.; Buenzli, J.-C. G.; Pinto, A.; Jeannerat, D.; Piguet, C. *J. Am. Chem. Soc.* 2005, 127, 888–903.